Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.760
Filtrar
1.
J Toxicol Environ Health A ; 87(11): 480-495, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591921

RESUMO

The toxic effects of 2, 4-dichlorophenol (2, 4-DCP) on aquatic organisms are well-established; however, the details regarding the mechanisms underlying the toxicity, especially immunotoxicity are poorly understood. Consequently, the aim of this study was to investigate the histopathologic, oxidative stress and immunotoxic effects attributed to exposure to sublethal concentrations of 2,4-DCP in the African catfish, Clarias gariepinus. Juvenile C. gariepinus were exposed to 0.4, 0.8, or 1.6 mg/L 2, 4-DCP for 28 days after which blood and head kidney were extracted for the determination of various nonspecific innate immune parameters while the liver was excised for histopathology examination and measurement of oxidative stress biomarkers. Control fish were maintained in water spiked 10 µL/L ethanol, representing the solvent control. A significant increase was noted in the activities of lactate dehydrogenase and superoxide dismutase as well as in levels of lipid peroxidation and DNA fragmentation in a dose-dependent manner, with higher adverse effects observed at the highest concentration tested (1.6 mg/L). The total white blood cells (WBC) count was significantly elevated in fish exposed to 2,4-DCP compared to control. Myeloperoxidase content was decreased significantly in fish exposed to 2,4-DCP especially at the highest concentration (1.6 mg/L) compared to controls. The respiratory burst activity did not differ markedly amongst groups. Histopathological lesions noted included edema, leucocyte infiltration, and depletion of hemopoietic tissue in the head kidney of exposed fish. There was significant upregulation in the mRNA expression of tumor necrosis factor (TNF-α) and heat shock protein 70 (HSP 70) but downregulation of major histocompatibility complex 2 (MHC 2) in exposed fish. Data demonstrated that exposure to 2,4-DCP resulted in histopathological lesions, oxidative stress, and compromised immune system in C. gariepinus.


Assuntos
Peixes-Gato , Clorofenóis , Poluentes Químicos da Água , Animais , Peixes-Gato/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos , Imunidade Inata
2.
Chirality ; 36(4): e23660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511944

RESUMO

A green and efficient process for the synthesis of cenobamate has been accomplished in 70% yield and >99% ee through the bio-reduction of ß-ketotetrazole using Daucus carota whole plant cells. The corresponding ß-hydroxytetrazole was isolated in 60% yield and >98% ee. This is the first report on the biocatalytic reduction of ß-ketotetrazole using plant enzymes derived from D. carota root cells with excellent enantioselectivity.


Assuntos
Anticonvulsivantes , Carbamatos , Clorofenóis , Cetonas , Tetrazóis , Estereoisomerismo , Biocatálise
3.
Food Chem ; 447: 138968, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489877

RESUMO

Given the severe problem of Baijiu authenticity, it is essential to discriminate Baijiu from different origins quickly and effectively. As organic acids (OAs) are the most dominant taste-imparting substances in Baijiu, we proposed a simple, fast, and effective OAs-targeted colorimetric sensor array based on the colorimetric reaction of 4-aminophenol (AP)/4-amino-3-chlorophenol (ACP) under oxidation of Cu(NO3)2 for the rapid discrimination of origins of Baijiu with three main aroma types. Hydrogen ions ionized from OAs induced the protonation of the amino group, which blocked the colorimetric reaction, and the different levels of OAs in Baijiu enabled the array to discriminate different origins of Baijiu. The array was implemented to analyze 10 simple OAs and 16 mixed OAs and further for the discrimination of 42 Baijius with an accuracy of 98%. This method provided an efficient research strategy for a basis for rapid quality analysis of Baijiu.


Assuntos
Clorofenóis , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Colorimetria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Ácidos/análise
5.
J Hazard Mater ; 469: 133983, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471376

RESUMO

The transient chlorophenol shock under some emergency conditions might directly affect the pollutant removal of bioreactor. Therefore, the recovery of bioreactor performance after transient chlorophenol shock is a noteworthy issue. In the present research, the performance, antioxidant response, microbial succession and functional genes of sequencing batch reactor (SBR) were evaluated under transient 2,4,6-trichlorophenol (2,4,6-TCP) shock. The chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal efficiencies decreased sharply in the first 4 days after 60 mg/L 2,4,6-TCP shock for 24 h and gradually recovered to normal in the subsequent 8 days. The nitrogen removal rates and their corresponding enzymatic activities rapidly decreased after transient 2,4,6-TCP shock and then gradually increased to normal. The increase of antioxidant enzymatic activity, Cu-Zn SOD genes and Fe-Mn SOD genes contributed to the recovery of SBR performance. The abundance of genes encoding ammonia monooxygenase and hydroxylamine dehydrogenase decreased after transient 2,4,6-TCP shock, including amoA, amoC and nxrA. Thauera, Dechloromonas and Candidatus_Competibacter played key roles in the restorative process, which provided stable abundances of narG, norB , norC and nosZ. The results will deeply understand into the effect of transient 2,4,6-TCP shock on bioreactor performance and provide theoretical basis to build promising recoveries strategy of bioreactor performance.


Assuntos
Antioxidantes , Clorofenóis , Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
6.
Sci Total Environ ; 922: 171270, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428603

RESUMO

Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.


Assuntos
Clorofenóis , Ciclídeos , Tilápia , Triclosan , Poluentes Químicos da Água , Animais , Humanos , Tilápia/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Distribuição Tecidual , Ciclídeos/metabolismo , Biotransformação , Sulfatos/metabolismo , Poluentes Químicos da Água/análise
7.
Drugs Aging ; 41(3): 251-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38446341

RESUMO

BACKGROUND: Cenobamate is an antiseizure medication (ASM) approved in the US and Europe for the treatment of uncontrolled focal seizures. OBJECTIVE: This post hoc analysis of a phase III, open-label safety study assessed the safety and efficacy of adjunctive cenobamate in older adults versus the overall study population. METHODS: Adults aged 18-70 years with uncontrolled focal seizures taking stable doses of one to three ASMs were enrolled in the phase III, open-label safety study; adults aged 65-70 years from that study were included in our safety analysis. Discontinuations due to adverse events and treatment-emergent adverse events (TEAEs) were assessed throughout the study in all patients who received one or more doses of cenobamate (safety study population). Efficacy was assessed post hoc in patients who had adequate seizure data available (post hoc efficacy population); we assessed patients aged 65-70 years from that population. Overall, 100% responder rates were assessed in the post hoc efficacy maintenance-phase population in 3-month intervals. Concomitant ASM drug load changes were also measured. For each ASM, drug load was defined as the ratio of actual drug dose/day to the World Health Organization defined daily dose (DDD). RESULTS: Of 1340 patients (mean age 39.7 years) in the safety study population, 42 were ≥ 65 years of age (mean age 67.0 years, 52.4% female). Median duration of exposure was 36.1 and 36.9 months for overall patients and older patients, respectively, and mean epilepsy duration was 22.9 and 38.5 years, respectively. At 1, 2, and 3 years, 80%, 72%, and 68% of patients overall, and 76%, 71%, and 69% of older patients, respectively, remained on cenobamate. Common TEAEs (≥ 20%) were somnolence and dizziness in overall patients, and somnolence, dizziness, fall, fatigue, balance disorder, and upper respiratory tract infection in older patients. Falls in older patients occurred after a mean 452.1 days of adjunctive cenobamate treatment (mean dose 262.5 mg/day; mean concomitant ASM drug load 2.46). Of 240 patients in the post hoc efficacy population, 18 were ≥ 65 years of age. Mean seizure frequency at baseline was 18.1 seizures/28 days for the efficacy population and 3.1 seizures/28 days for older patients. Rates of 100% seizure reduction within 3-month intervals during the maintenance phase increased over time for the overall population (n = 214) and older adults (n = 15), reaching 51.9% and 78.6%, respectively, by 24 months. Mean percentage change in concomitant ASM drug load, not including cenobamate, was reduced in the overall efficacy population (31.8%) and older patients (36.3%) after 24 months of treatment. CONCLUSIONS: Results from this post hoc analysis showed notable rates of efficacy in older patients taking adjunctive cenobamate. Rates of several individual TEAEs occurred more frequently in older patients. Further reductions in concomitant ASMs may be needed in older patients when starting cenobamate to avoid adverse effects such as somnolence, dizziness, and falls. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT02535091.


Assuntos
Anticonvulsivantes , Carbamatos , Clorofenóis , Tontura , Tetrazóis , Humanos , Feminino , Idoso , Masculino , Anticonvulsivantes/efeitos adversos , Tontura/induzido quimicamente , Tontura/tratamento farmacológico , Sonolência , Resultado do Tratamento , Quimioterapia Combinada , Método Duplo-Cego , Convulsões/tratamento farmacológico
8.
Sci Rep ; 14(1): 6457, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499640

RESUMO

Our study aimed to evaluate the correlation between levels of 2,4-DCP(2,4-Dichlorophenol) and 2,5-DCP(2,5-Dichlorophenol) and the prevalence of kidney stones in US female adults. Participants were chosen from the National Health and Nutrition Examination Survey database, spanning the years 2007-2016. Dose-response curves were analyzed using logistic regression, subgroup analyses, and other statistical methods to evaluate the relationship between 2,4-DCP and 2,5-DCP levels and the prevalence of kidney stones. The final study included 3220 participants aged over 20 years, with 252 females reporting a history of kidney stones. After accounting for all interfering variables, we found that every 0.1 ug/ml increase in 2.4-DCP correlated with a 1% rise in kidney stone prevalence (OR = 1.01, 95% CI 1.00, 1.01), whereas the same increase in 2.5-DCP was linked to a 27% growth in prevalence (OR = 1.27, 95% CI 1.01, 1.61). Sensitivity analysis was performed by triangulating 2,4-DCP and 2,5-DCP levels. The dose-response curves demonstrated a linear positive relationship between 2,4-DCP and 2,5-DCP levels and the risk of stone development. Our findings indicate a positive correlation between 2,4-DCP and 2,5-DCP levels and the prevalence of kidney stones in US female adults. This association is of clinical significance; however, a direct causal relationship cannot be definitively established.


Assuntos
Clorofenóis , Cálculos Renais , Adulto , Humanos , Feminino , Inquéritos Nutricionais , Prevalência , Cálculos Renais/epidemiologia , Cálculos Renais/etiologia , Fenóis
9.
Molecules ; 29(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398636

RESUMO

Cenobamate (CNB) is a new anti-seizure medication (ASM) recently introduced in clinical practice after approval by the FDA and EMA for the add-on treatment of focal onset seizures in adult patients. Although its mechanism of action has not been fully understood, CNB showed promising clinical efficacy in patients treated with concomitant ASMs. The accessibility of CNB could pave a way for the treatment of refractory or drug-resistant epilepsies, which still affect at least one-third of the patients under pharmacological treatment. In this context, therapeutic drug monitoring (TDM) offers a massive opportunity for better management of epileptic patients, especially those undergoing combined therapy. Here, we describe the first fully validated ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the quantification of CNB and concomitant ASMs in human plasma, with samples extracted either manually or by means of a liquid handler. Our method was validated according to the most recent ICH International Guideline M10 for Bioanalytical Method Validation and Study Sample Analysis. The method proved to be selective for CNB and displayed a linear range from 0.8 to 80 mg/L; no matrix effect was found (98.2 ± 4.1%), while intra-day and inter-day accuracy and precision were within the acceptance range. Also, CNB short- and long-term stability in plasma under different conditions was assessed. Leftover human plasma samples were employed as study samples for method validation. Our method proved to be highly sensitive and selective to quantify CNB and concomitant ASMs in human plasma; therefore, this method can be employed for a routinely TDM-based approach to support physicians in the management of an epileptic patient.


Assuntos
Clorofenóis , Epilepsia , Tetrazóis , Adulto , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Carbamatos , Epilepsia/tratamento farmacológico , Reprodutibilidade dos Testes
10.
Talanta ; 272: 125829, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422907

RESUMO

Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 µM and 2.18 µM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.


Assuntos
Clorofenóis , Alimentos , Tiabendazol , Humanos , Tiabendazol/análise , Sucos de Frutas e Vegetais
11.
Glia ; 72(5): 982-998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363040

RESUMO

The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.


Assuntos
Clorofenóis , Sistema Glinfático , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Clorofenóis/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo
12.
Environ Pollut ; 346: 123594, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378077

RESUMO

In response to the demand for advanced purification of industrial secondary effluent, a new method has been developed for treating chlorophenol wastewater using the novel ceramsite-based Ti/SnO2-Sb particle electrodes (Ti/SnO2-Sb/CB) enhanced electrocatalytic denitrification biofilter (EDNBF-P) to achieve removal of chlorophenols (CPs), denitrification, and reduction of effluent toxicity. The results showed that significantly improved CPs and TN removal efficiency at low COD/N compared to conventional denitrification biofilter, with CPs removal rates increasing by 0.33%-59.27% and TN removal rates increasing by 12.53%-38.92%. Under the conditions of HRT = 2h, 3V voltage, charging times = 12h, and 25 °C, the concentrations of the CPs in the effluent of EDNBF-P were all below 1 mg/L, the TN concentration was below 15 mg/L, while the effluent toxicity reached the low toxicity level. Additionally, the Ti/SnO2-Sb/CB particle electrodes effectively alleviated the accumulation of NO2--N caused by applied voltage. The Silanimonas, Pseudomonas and Rhodobacter was identified as the core microorganism for denitrification and toxicity reduction. This study validated that EDNBF-P could achieve synergistic treatment of CPs and TN through electrocatalysis and microbial degradation, providing a methodological support for achieving advanced purification of chlorophenol wastewater with low COD/N in industrial applications.


Assuntos
Clorofenóis , Misturas Complexas , Microbiota , Águas Residuárias , Desnitrificação , Titânio/química , Eletrodos , Nitrogênio , Reatores Biológicos , Oxirredução
13.
J Environ Sci (China) ; 141: 235-248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408824

RESUMO

In this study, the cobalt-nickel layered double hydroxides (CoNi LDH) were synthesized with a variety of Co/Ni mass ratio, as CoxNiy LDHs. In comparison, Co1Ni3 LDH presented the best peroxymonosulfate (PMS) activation efficiency for 2,4-dichlorophenol removal. Meanwhile, CoNi LDH@Nickel foam (CoNi LDH@NF) composite membrane was constructed for enhancing the stability of catalytic performance. Herein, CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22% within 90 min for 2,4-DCP when [PMS]0 = 0.4 g/L, Co1Ni3 LDH@NF = 2 cm × 2 cm (0.2 g/L), reaction temperature = 298 K. For the surface morphology and structure of the catalyst, it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure, good specific surface area and sufficient active sites. Importantly, ·OH, SO4·- and 1O2 played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition, which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system. Hence, this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane, proposing a new theoretical basis of PMS heterogeneous catalysts selection.


Assuntos
Clorofenóis , Hidróxidos , Níquel , Cobalto , Peróxidos , Fenóis
14.
Int J Biol Macromol ; 262(Pt 2): 130239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367788

RESUMO

Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.


Assuntos
Clorofenóis , Nanopartículas , Celulose/química , Hidrogéis/química , Nanopartículas/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-38354459

RESUMO

Inhalation of chlorine gas, with subsequent hydrolysis in the airway and lungs to form hydrochloric acid (HCl) and hypochlorous acid (HOCl), can cause pulmonary edema (i.e., fluid build-up in the lungs), pulmonary inflammation (with or without infection), respiratory failure, and death. The HOCl produced from chlorine is known to react with tyrosine to form adducts via electrophilic aromatic substitution, resulting in 3-chlorotyrosine and 3,5-dichlorotyrosine adducts. While several analysis methods are available for determining these adducts, each method has significant disadvantages. Hence, a simple and sensitive ultra-high performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) method was developed for the determination of chlorotyrosine adducts. The sample preparation involves base hydrolysis of isolated plasma proteins to form 2-chlorophenol (CP) from monochlorotyrosine adducts and 2,6-dichlorophenol (2,6-DCP), from dichlorotyrosine adducts, as markers of chlorine exposure. The chlorophenols are extracted with cyclohexane prior to UHPLC-MS/MS analysis. The method produced excellent sensitivity for 2,6-DCP with a limit of detection of 2.2 µg/kg, calibration curve linearity extending from 0.054-54 mg/kg (R2 ≥ 0.9997 and %RA > 94), and accuracy and precision of 100 ± 14 %, and <15 % relative standard deviation, respectively. The sensitivity of the method for 2-CP was relatively poor, so it was used only as a secondary marker for severe chlorine exposure. The method successfully detected elevated levels of 2,6-DCP from hypochlorite-spiked plasma protein and plasma protein isolated from chlorine-exposed rats.


Assuntos
Cloro , Clorofenóis , Tirosina/análogos & derivados , Ratos , Animais , Cloro/análise , Cloro/química , Espectrometria de Massas em Tandem/métodos , 60705 , Cromatografia Líquida , Proteínas Sanguíneas
16.
Epilepsy Res ; 200: 107306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340681

RESUMO

OBJECTIVE: Many patients with epilepsy require polytherapy, which increases their antiseizure medication (ASM) drug load, a measure that considers the doses of all ASMs a patient is taking. Changes in concomitant ASM drug load after adding cenobamate were evaluated post-hoc in a subset of the open-label, phase 3 study. METHODS: Patients 18-70 years old with uncontrolled focal seizures taking 1-3 ASMs were enrolled. Total concomitant ASM drug load (not including cenobamate) was calculated by dividing the patient's prescribed dose for each ASM by its defined daily dose, per the World Health Organization, then summing the ratios. Changes in concomitant ASM drug load were measured from baseline in 3-month intervals up to 24 months by both total and class-specific ASM drug load. Subgroups of interest included: older adults (65-70 years), prior epilepsy-related surgery vs none, and baseline seizure frequency < 3 vs ≥ 3 seizures/28 days. RESULTS: Data from 240 patients were available (mean age 41.8 years, mean baseline drug load 3.57). Following cenobamate initiation, the mean concomitant ASM drug load was reduced by 29.4 % at Month 12 % and 31.8 % at Month 24. Reductions occurred in all assessed ASM drug classes, with the largest reduction in benzodiazepines (55.2 % at Month 24). Each assessed subgroup exceeded a 30 % reduction in concomitant ASM drug load at Month 24. Over 24 months, maintenance of ≥ 50 % response occurred in 89.3 %, 86.4 %, and 90.6 % of patients with low (-0.25 to <0), moderate (-0.59 to -0.25), or high (-3.3 to -0.59) numerical reductions in concomitant ASM drug load from baseline, respectively, compared with 86.0 % in patients with no change in drug load; maintenance of 100 % response occurred in 80.7 %, 84.3 %, and 70.0 % of patients with low, moderate, or high numerical reductions in concomitant ASM drug load, compared with 82.0 % in patients with no change. CONCLUSIONS: Adding cenobamate led to reduced mean concomitant ASM drug loads during 1 and 2 years of treatment. Reductions occurred regardless of ASM drug class, patient age, or epilepsy disease characteristics and did not impact maintenance of response rates.


Assuntos
Clorofenóis , Epilepsia , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Quimioterapia Combinada , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Tetrazóis , Resultado do Tratamento , Ensaios Clínicos Fase III como Assunto , Estudos Multicêntricos como Assunto
17.
Chemosphere ; 352: 141476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382716

RESUMO

While numerous studies have addressed the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP) in wastewater, an existing research gap pertains to operational factors' optimization by non-linear prediction models to ensure a cost-effective and sustainable process. Herein, we focus on optimizing the photocatalytic degradation of 2,6-DCP using artificial intelligence modeling, aiming at minimizing initial capital outlay and ongoing operational expenses. Hence, Fe/Zn@biochar, a novel material, was synthesized, characterized, and applied to harness the dual capabilities of 2,6-DCP adsorption and degradation. Fe/Zn@biochar exhibited an adsorption energy of -21.858 kJ/mol, effectively capturing the 2,6-DCP molecules. This catalyst accumulated photo-excited electrons, which, upon interaction with adsorbed oxygen and/or dissolved oxygen generated •O2-. The •OH radicals could also be produced from h+ in the Fe/Zn@biochar valence band, cleaving the C-Cl bonds to Cl- ions, dechlorinated byproducts, and phenols. An artificial neural network (ANN) model, with a 4-10-1 topology, "trainlm" training function, and feed-forward back-propagation algorithm, was developed to predict the 2,6-DCP removal efficiency. The ANN prediction accuracy was expressed as R2 = 0.967 and mean squared error = 5.56e-22. The ANN-based optimized condition depicted that over 90% of 2,6-DCP could be eliminated under C0 = 130 mg/L, pH = 2.74, and catalyst dosage = 168 mg/L within ∼4 h. This optimum condition corresponded to a total cost of $7.70/m3, which was cheaper than the price estimated from the unoptimized photocatalytic system by 16%. Hence, the proposed ANN could be employed to enhance the 2,6-DCP photocatalytic degradation process with reduced operational expenses, providing practical and cost-effective solutions for petrochemical wastewater treatment.


Assuntos
Inteligência Artificial , Carvão Vegetal , Clorofenóis , Águas Residuárias , Fenóis , Zinco
18.
Environ Pollut ; 345: 123527, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336136

RESUMO

Chlorobenzene (CB) is a prevalent organic contaminant in water and soil environments. It presents high chemical stability and is resistant to both oxidation and reduction. In this study, we showed that CB was substantially removed by soluble Mn(III) produced during the reductive dissolution of colloidal MnO2 by naturally-occurring organic acids such as formate (FOR), oxalate (OX), and citrate (CIT). The removal rate was dependent on the physicochemical properties of organic acids. With strong electron-donating and coordination ability, OX and CIT promoted MnO2 dissolution and Mn(III) generation compared to FOR, but had adverse effects on the stability and reactivity of Mn(III). As a result, CB removal followed the order: MnO2/CIT > MnO2/FOR > MnO2/OX. Analysis of the transformation products showed that Mn(III) complexes acted as strong electrophiles, attacking the ortho/para carbons of the benzene ring and transforming CB to chlorophenols via an electrophilic substitution mechanism. The theoretical foundation of this proposed reaction mechanism was supplemented by quantum mechanical calculations. Together, the findings of this study provide new insights into the transformation of CB in natural environments and hold the potential to offer a novel strategy for the development of manganese oxide/ligand systems for CB elimination.


Assuntos
Clorofenóis , Óxidos , Óxidos/química , Compostos de Manganês/química , Oxirredução , Água , Compostos Orgânicos
19.
Biomed Res Int ; 2024: 8864513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304347

RESUMO

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Assuntos
Perda do Osso Alveolar , Clorofenóis , Pulpite , Cães , Humanos , Camundongos , Animais , Luteolina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Microtomografia por Raio-X , Proteômica , Inflamação/metabolismo , Guaiacol , Polpa Dentária/metabolismo
20.
Environ Int ; 183: 108378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181479

RESUMO

BACKGROUND: Synthetic chemicals are increasingly being recognized for potential independent contributions to preterm birth (PTB) and low birth weight (LBW). Bisphenols, parabens, and triclosan are consumer product chemicals that act via similar mechanisms including estrogen, androgen, and thyroid disruption and oxidative stress. Multiple cohort studies have endeavored to examine effects on birth outcomes, and systematic reviews have been limited due to measurement of 1-2 spot samples during pregnancy and limited diversity of populations. OBJECTIVE: To study the effects of prenatal phenols and parabens on birth size and gestational age (GA) in 3,619 mother-infant pairs from 11 cohorts in the NIH Environmental influences on Child Health Outcomes program. RESULTS: While many associations were modest and statistically imprecise, a 1-unit increase in log10 pregnancy averaged concentration of benzophenone-3 and methylparaben were associated with decreases in birthweight, birthweight adjusted for gestational age and SGA. Increases in the odds of being SGA were 29% (95% CI: 5%, 58%) and 32% (95% CI: 3%, 70%), respectively. Bisphenol S in third trimester was also associated with SGA (OR 1.52, 95% CI 1.08, 2.13). Associations of benzophenone-3 and methylparaben with PTB and LBW were null. In addition, a 1-unit increase in log10 pregnancy averaged concentration of 2,4-dichlorophenol was associated with 43% lower (95% CI: -67%, -2%) odds of low birthweight; the direction of effect was the same for the highly correlated 2,5-dichlorophenol, but with a smaller magnitude (-29%, 95% CI: -53%, 8%). DISCUSSION: In a large and diverse sample generally representative of the United States, benzophenone-3 and methylparaben were associated with lower birthweight as well as birthweight adjusted for gestational age and higher odds of SGA, while 2,4-dichlorophenol. These associations with smaller size at birth are concerning in light of the known consequences of intrauterine growth restriction for multiple important health outcomes emerging later in life.


Assuntos
Benzofenonas , Clorofenóis , Parabenos , Nascimento Prematuro , Gravidez , Criança , Feminino , Humanos , Recém-Nascido , Estados Unidos , Parabenos/análise , Peso ao Nascer , Fenol , Fenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...